Trends in Impaired Driving Toxicology Analyses & Opportunities for Improvement

Association of Ignition Interlock Program Administrators Charleston, SC May 23, 2023

Chris Heartsill - Regional Toxicology Liaison - NHTSA Region 7

Regional Toxicology Liaisons Project

NHTSA Regions 5,7,9

The Team!

NHTSA REGION 9

KRISTEN BURKE kristen@soft-tox.org **NHTSA REGION 7**

CHRIS HEARTSILL chris@soft-tox.org NHTSA REGION 5

SABRA JONES sabra@soft-tox.org **RTL Project Manager**

Amy Miles amy.miles@slh.wisc.edu

Liaison Goals (long-term)

Consistency	Communication	Involvement	Grow
Work to bring consistency to laboratory testing throughout the regions	Be a liaison between toxicology laboratories and other partners in the impaired driving problem	Ensure the laboratories are aware and involved in state and regional meetings where impaired driving is discussed.	Expand the project to the other NHTSA Regions.

Current Traffic Safety Concerns

- National Highway Traffic Safety Report on 2020 Fatalities
 - 38, 824 people died on US Roadways
 - An increase of 6.8% regarding fatal crashes
 - 45% of those fatal crashes involve risky behavior (DUI, speed)
 - Alcohol-impaired fatalities were up 14%

https://www.nhtsa.gov/press-releases/2020-traffic-crash-datafatalities#:~:text=The%20U.S.%20Department%20of%20Transportation 's,number%20of%20fatalities%20since%202007.

Current Traffic Safety Concerns

- National Highway Traffic Safety Report on 2021 Fatalities
 - 8,730 motor vehicle deaths in the first quarter of 2021
 - An increase of 10.5% from the same period in 2020
 - This increase comes even as driving declined

Newly Released Estimates Show Traffic Fatalities Reached a 16-Year High in 2021

Annual Fatalities 2015 - 2020 40,000 38,680 39,000 37,806 37,473 38,000 36,835 36,096 37,000 35,484 36,000 35,000 34,000 33,000 32,000 31,000 30,000 2015 2016 2017 2018 2019 2020

Adapted from NCSA, 2021²

Figure 1: FARS Motor Vehicle Fatalities in the United States 2015 to 2020

Current Traffic Safety Concerns

National Highway Traffic Safety Report on 2022 Fatalities

- Early Estimates report that 9,560 people died in motor vehicle crashes in the first quarter of 2022
- An increase of 7% from the same period in 2021

STATE LAW: IGNITION INTERLOCKS

Mandatory all offender

Incentivized first offender and mandatory repeat Mandatory high-BAC and repeat offender

Incentivized all offender (not mandatory)

Mandatory repeat offender

Discretionary

Incentivized first offender and mandatory high-BAC/repeat

High/Repeat

Alcohol Ignition Interlock Devices

 Reduce driving while impaired repeat offenses by about 70% while they are installed

50 states have some sort of ignition interlock program

 Despite these laws, only about 1/5 of those arrested for DWI have interlocks installed

Drug Ignition Interlock Devices

Current Traffic Safety Concerns

2022 Study by Columbia University 2016-2019 34, 514 drivers were questioned 42% reported DUI of cannabis, ethanol, or both 8% DUI-A 20% DUI-C 14% DUI-A+C 68% were from a state with medical cannabis laws

https://www.publichealth.columbia.edu/public-healthnow/news/over-40-percent-drivers-past-year-alcoholand-cannabis-use-report-dui

Current Traffic Safety Concerns

- Substance Abuse and Mental
 Health Services Administration
 Survey on Drug Use
 - 2018 approximately 12 million drivers reported driving under the influence of cannabis.
 - 2.3 million reported driving under the influence of other illicit drugs
 - (20 million drove under the influence of alcohol)

The Laboratory Problem:

- Ever changing landscape of drugs makes it difficult for toxicology laboratories to test for all the drugs that may be present
 - Laboratories generally cover the routine drugs (THC, Methamphetamine, benzodiazepines, opioids)
 - Some novel or short-lived drugs may not be detected
- Laboratories have different capabilities
 - Instrumentation, staffing, method validations, etc.

The Data Problem:

- Due to the different capabilities, data may be inconsistent from lab to lab
 - Instrumentation
 - Scope of testing
 - Extraction techniques
 - Workflow or policy

Creates gaps in databases such as the Fatality Analysis Reporting System (FARS), National Forensic Laboratory Information System (NFLIS-TOX, DEA)

Scope of Testing

DOT HS 812 072

Behavioral Safety Research

November 2014

Understanding the Limitations of Drug Test Information, Reporting, and Testing Practices in Fatal Crashes

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812072

Amy Berning & Dereece D. Smither

Table 1 Drivers Involved in Fatal Motor Vehicle Traffic Crashes by Crash Year, Drug Test Status, and Drug Test Results, 2008-2012

				Drug Te:	st Status		Drug Tests Results						
		Not Tested	l for Drugs	Tested f	or Drugs	r Drugs Unknown		Tested, Drug Positive		Tested, Drug Negative		Tested, Results Unknown	
Crash Year	Total Drivers	Number	Percent of Total Drivers	Number	Percent of Total Drivers	Number	Percent of Total Drivers	Number	Percent of Total Tested	Number	Percent of Total Tested	Number	Percent of Total Tested
2008	50,416	26,883	53%	20,875	41%	2,658	5%	5,433	26%	13,088	63%	2,354	11%
2009	45,337	23,617	52%	18,357	40%	3,363	7%	5,518	30%	10,863	59%	1,976	11%
2010	44,599	23,058	52%	19,319	43%	2,222	5%	5,946	31%	11,758	61%	1,615	8%
2011	43,840	22,224	51%	18,648	43%	2,968	7%	6,096	33%	11,189	60%	1,363	7%
2012	45,337	23,389	52%	18,120	40%	3,828	8%	5,765	32%	10,112	56%	2,243	12%

Source: NHTSA, 2014

Findings

- The majority of drivers were *not* tested for drugs (only 41% and 40% of drivers were tested in 2008 and 2012, respectively);
- There are typically higher testing rates of drivers who died in crashes (65% in 2008 and 61% in 2012) compared to surviving drivers (20% in 2008 and 21% in 2012) (not shown in Table 1);
- A driver who tests positive for a drug is not necessarily impaired by the drug;
- There is no consistent set of policies or procedures for drug testing across States; and
- Decreases in the cost of drug testing may have led to an increase in the number of people tested, as well as the range of drug types tested.

Conclusions

Amy Berning & Dereece D. Smither

The drugged driving issue is complex and drug testing and reporting across States and jurisdictions is not uniform. Users of FARS data must keep the limitations in mind when interpreting the data.

Conclusions

Amy Berning & Dereece D. Smither

Currently, the data in FARS is insufficient to allow comparisons of drug use across years, or across States. In addition, in light of the limitations detailed above, it is also not possible to make inferences about impairment, crash causation, or comparisons to alcohol from this limited data.

The Data Problem:

• It is difficult to compile information quickly enough.

- Can do a retrospective look usually 1-2 years after occurrence
- The landscape of drug use changes so rapidly that some data will be missed
- Top drugs will typically remain the same

The Data Problem:

• Lowest BAC laboratories stop testing was 0.08 g/dL

Drug Trends

Drug Trends

Drug trends are somewhat regional

- Scope of laboratory testing may need adjustment to account for local trends
- 377,787 Methamphetamine seizures
 - 43.9% in the West
 - 28.3% in the Midwest
 - 7.5% in the Northeast
 - 31.7% in the South
- 98,077 Heroin seizures
 - 13.6% in the West
 - 6.2% in the Midwest
 - 10.2% in the Northeast
 - 4.9% in the South

Figure 1. National Drug-Involved Overdose Deaths* Number Among All Ages, by Gender, 1999-2020

*Includes deaths with underlying causes of unintentional drug poisoning (X40–X44), suicide drug poisoning (X60–X64), homicide drug poisoning (X85), or drug poisoning of undetermined intent (Y10–Y14), as coded in the International Classification of Diseases, 10th Revision. Source: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2020 on CDC WONDER Online Database, released 12/2021.

Figure 2. National Drug-Involved Overdose Deaths*, Number Among All Ages, 1999-2020

*Includes deaths with underlying causes of unintentional drug poisoning (X40–X44), suicide drug poisoning (X60–X64), homicide drug poisoning (X85), or drug poisoning of undetermined intent (Y10–Y14), as coded in the International Classification of Diseases, 10th Revision. Source: Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death 1999-2020 on CDC WONDER Online Database, released 12/2021.

Drug Usership Among Americans Aged 12 & Older

2020 Survey

Survey sent to 84 laboratories across the Nation 65 laboratories completed the survey.

Survey Questions

Participants provided information on:
 Caseload

- Laboratory Resources/Methods
- Turnaround Time
- Most frequently encountered drugs
- Laboratory Needs

Survey Demographics

State Regional **County** Municipal **Private** Hospital □ University **Federal**

Prevalence	Compound/Class
1 (More) 🤇	THC and metabolites
2	Methamphetamine
3	Cocaine and metabolites
4	Alprazolam/alpha-hydroxyalprazolam
5	Clonazepam/7-aminoclonazepam
6	Morphine
7	Fentanyl
8	Diazepam/nordiazepam
9	Oxycodone
10	Citalopram
11	Hydrocodone
12	Lorazepam
13	Tramadol/O-Desmethyltramadol
14	Zolpidem
15 (Less)	Temazepam

Updates for Recommendations for Drug Testing in DUID & Traffic Fatality Investigations

Amanda L. D'Orazio, MS Amanda L.A. Mohr, MS Barry K. Logan, PhD, F-ABFT

The Center for Forensic Science Research & Education at the Fredric Rieders Family Foundation 2300 Stratford Avenue, Willow Grove, PA 19090

Prevalence	Compound/Class
1 (More)	THC and metabolites
2	Methamphetamine
3	Cocaine and metabolites
4	Alprazolam/alpha-hydroxyalprazolam
5	Clonazepam/7-aminoclonazepam
6	Morphine
7	Fentanyl
8	Diazepam/nordiazepam
9	Oxycodone
10	Citalopram
11	Hydrocodone
12	Lorazepam
13	Tramadol/O-Desmethyltramadol
14	Zolpidem
15 (Less)	Temazepam

Prevalence	Compound/Class
1 (More)	THC and metabolites
2	Methamphetamine
3	Cocaine a nd metabolit es
4	Alprazolam/alpha-hydroxyalprazolam
5	Clonazepam/7-aminoclonazepam
6	Morphine
7	Fentanyl
8	Diazepam/nordiazepam
9	Oxycodone
10	Citalopram
11	Hydrocodone
12	Lorazepam
13	Tramadol/O-Desmethyltramadol
14	Zolpidem
15 (Less)	Temazepam

Prevalence	Compound/Class
1 (More)	THC and metabolites
2	Methamphetamine
3	Cocaine and metabolites
4	Alprazolam/alpha-hydroxyalprazolam
5	Clonazepam/7-aminoclonazepam
6	Morphine
7	Fentanyl
8	Diazepam/nordiazepam
9	Oxycodone
10	Citalopram
11	Hydrocodone
12	Lorazepam
13	Tramadol/O-Desmethyltramadol
14	Zolpidem
15 (Less)	Temazepam

To provide an overview of impaired driving fatality rates, legislation, and prevention mechanisms of each state.

Impaired Driving State Landscape

https://www.nhtsa.gov/riskydriving/drug-impaired-driving region **7**

• Region - 1

• Region - 3

Region - 4

Leading Drug Identified by DRE Toxicology Results Cannabis

• Region - 5

Region - 6

• Region - 7

Region - 8

• Region - 9

Region - 10

DOT HS 813 135

Behavioral Safety Research

June 2021

Update to Special Reports on Traffic Safety During the COVID-19 Public Health Emergency: Fourth Quarter Data

Drivers (Excluding Motorcyclists): Positive for Drug Category by Quarter

	Q4 2 (N=	2019 409)	Q1 2 (N=	2020 536)	Q2 2 (N=	2020 404)	Q3 2 (N=	Q3 2020 (N=603)		Q4 2020 (N=474)	
Drug Category	n	%	n	%	n	%	n	%	n	%	
Alcohol	90	22.0	137	25.6	102	25.2	166	27.5	127	26.8	
Cannabinoids	78	19.1	118	22.0	133	32.9 ^{A,B}	155	25.7	130	27.4	
Opioids	28	6.8	52	9.7	60	14.9 ^A	88 14.6 ^A		44	9.3	
Stimulants	36	8.8	60	11.2	41	10.1	64	10.6	42	8.9	
Sedatives	42	10.3	35	6.5	34	8.4	48	8.0	33	7.0	
Antidepressants	11	2.7	12	2.2	1	0.2*	4	0.7	4	0.8	
Over-the-Counter	4	1.0	22	4.1	6	1.5	10	1.7	8	1.7	
Other Drugs	7	1.7	9	1.7	3	0.7	17	2.8	10	2.1	
At Least 1 Category	211	51.6	292	54.5	260	64.4 ^{A,B}	366	60.74	266	56.1	
Multiple Categories	69	16.9	120	22.4	92	22.8	150	24.9 ^A	108	22.8	

^A Significantly different (p < .05) compared to Q4 2019 period.

^B Significantly different (p < .05) compared to Q1 2020 period.

DOT HS 813 135

Behavioral Safety Research

June 2021

Update to Special Reports on Traffic Safety During the COVID-19 Public Health Emergency: Fourth Quarter Data

Drivers (Excluding Motorcyclists): Positive for Drug Category by Quarter

	Q4 2 (N=	2019 409)	Q1 2 (N=	2020 536)	Q2 2 (N=	2020 404)	Q3 2020 (N=603)		Q4 2020 (N=474)	
Drug Category	n	%	n	%	n	%	n	%	n	%
Alcohol	90	22.0	137	25.6	102	25.2	166	27.5	127	26.8
Cannabinoids	78	19.1	118	22.0	133	32.9 ^{A,B}	155	25.7	130	27.4
Opioids	28	6.8	52	9.7	60	14.9 ^A	88	14.6 [^]	44	9.3
Stimulants	36	8.8	60	11.2	41	10.1	64	10.6	42	8.9
Sedatives	42	10.3	35	6.5	34	8.4	48	8.0	33	7.0
Antidepressants	11	2.7	12	2.2	1	0.2*	4	0.7	4	0.8
Over-the-Counter	4	1.0	22	4.1	6	1.5	10	1.7	8	1.7
Other Drugs	7	1.7	9	1.7	3	0.7	17	2.8	10	2.1
At Least 1 Category	211	51.6	292	54.5	260	64.4 ^{A,B}	366	60.7*	266	56.1
Multiple Categories	69	16.9	120	22.4	92	22.8	150	24.9 ^A	108	22.8

^A Significantly different (p < .05) compared to Q4 2019 period.

^B Significantly different (p < .05) compared to Q1 2020 period.

DOT HS 813 135

Behavioral Safety Research

June 2021

Update to Special Reports on Traffic Safety During the COVID-19 Public Health Emergency: Fourth Quarter Data

Drivers (Excluding Motorcyclists): Positive for Drug Category by Quarter

	Q4 2 (N=4	2019 409)	Q1 2 (N=	2020 536)	Q2 2 (N=4	2020 404)	Q3 2020 (N=603)		Q4 2020 (N=474)	
Drug Category	n	%	n	%	n	%	n	%	n	%
Alcohol	90	22.0	137	25.6	102	25.2	166	27.5	127	26.8
Cannabinoids	78	19.1	118	22.0	133	32.9 ^{A,B}	155	25.7	130	27.4
Opioids	28	6.8	52	9.7	60	14.9 ^A	88	14.6 ^A	44	9.3
Stimulants	36	8.8	60	11.2	41	10.1	64	10.6	42	8.9
Sedatives	42	10.3	35	6.5	34	8.4	48	8.0	33	7.0
Antidepressants	11	2.7	12	2.2	1	0.24	4	0.7	4	0.8
Over-the-Counter	4	1.0	22	4.1	6	1.5	10	1.7	8	1.7
Other Drugs	7	1.7	9	1.7	3	0.7	17	2.8	10	2.1
At Least 1 Category	211	51.6	292	54.5	260	64.4 ^{A,B}	366	60.7*	266	56.1
Multiple Categories	69	16.9	120	22.4	92	22.8	150	24.9 ^A	108	22.8

^A Significantly different (p < .05) compared to Q4 2019 period.

^B Significantly different (p < .05) compared to Q1 2020 period.

U.S. Department of Transportation

National Highway Traffic Safety Administration

DOT HS 813 399

NHTSA December 2022

✐▲★

Alcohol and Drug Prevalence Among Seriously or Fatally Injured Road Users

	Table 7. Overall Drug Prevalence by Case Source										
	Trauma Center			N	ledical	Examiner		Total			
	(<i>n</i> =0,382)				(11-	-097)		(11 - 7	,279)		
Drug Category	n	%	95% CI	n	%	95% CI	Ν	%	95% CI		
Alcohol	1,364	21.4	[20.4, 22.4]	321	35.8	[32.7, 39.0]	1,685	23.1	[22.2, 24.1]		
Cannabinoids^	1,579	24.7	[23.7, 25.8]	251	28.0	[25.1, 31.0]	1,830	25.1	[24.2, 26.1]		
Stimulants	675	10.6	[9.8, 11.3]	112	12.5	[10.4, 14.8]	787	10.8	[10.1, 11.5]		
Sedatives	475	7.4	[6.8, 8.1]	73	8.1	[6.5, 10.1]	548	7.5	[6.9, 8.2]		
Opioids	541	8.5	[7.8, 9.2]	137	15.3	[13.0, 17.7]	678	9.3	[8.7, 10.0]		
Antidepressants	64	1.0	[0.8, 1.3]	10	1.1	[0.6, 2.0]	74	1.0	[0.8, 1.3]		
Over-the-Counter	106	1.7	[1.4, 2.0]	39	4.3	[3.2, 5.8]	145	2.0	[1.7, 2.3]		
Other Drugs	97	1.5	[1.2, 1.8]	36	4.0	[2.9, 5.4]	133	1.8	[1.5, 2.2]		
Positive for Any Drug	3,456	54.2	[52.9, 55.4]	60 7	67.7	[64.6, 70.7]	4,063	55.8	[54.7, 57.0]		
Drug Negative	2,926	45.8	[44.6, 47.1]	290	32.3	[29.3, 35.4]	3,216	44.2	[43.0, 45.3]		
Positive for 2 or More Drug Categories	1,163	18.2	[17.3, 19.2]	286	31.9	[28.9, 35.0]	1,449	19.9	[19.0, 20.8]		

^Active THC (Δ -9-THC or 11-OH-THC).

Notes: "Drug" refers to alcohol, medications, and all other drugs included on this study's toxicology panel. This table combines data from all road users (e.g., drivers, pedestrians, bicyclists) included in the study.

	Trauma Center			Μ	[edical]	Examiner	Total			
		(<i>n</i> =6,	382)		<u>(n =</u>	897)	(N =7,279)			
Drug Category	n	%	95% CI	n	%	95% CI	Ν	%	95% CI	
Alcohol	1,364	21.4	[20.4, 22.4]	321	35.8	[32.7, 39.0]	1,685	23.1	[22.2, 24.1]	
Cannabinoids^	1,579	24.7	[23.7, 25.8]	251	28.0	[25.1, 31.0]	1,830	25.1	[24.2, 26.1]	
Stimulants	675	10.6	[9.8, 11.3]	112	12.5	[10.4, 14.8]	787	10.8	[10.1, 11.5]	
Sedatives	475	7.4	[6.8, 8.1]	73	8.1	[6.5, 10.1]	548	7.5	[6.9, 8.2]	
Opioids	541	8.5	[7.8, 9.2]	137	15.3	[13.0, 17.7]	678	9.3	[8.7, 10.0]	
Antidepressants	64	1.0	[0.8, 1.3]	10	1.1	[0.6, 2.0]	74	1.0	[0.8, 1.3]	
Over-the-Counter	106	1.7	[1.4, 2.0]	39	4.3	[3.2, 5.8]	145	2.0	[1.7, 2.3]	
Other Drugs	97	1.5	[1.2, 1.8]	36	4.0	[2.9, 5.4]	133	1.8	[1.5, 2.2]	
									F	
Positive for Any Drug	3,456	54.2	[52.9, 55.4]	6 07	67.7	[64.6, 70.7]	4,063	55.8	[54.7, 57.0]	
Drug Negative	2,926	45.8	[44.6, 47.1]	290	32.3	[29.3, 35.4]	3,216	44.2	[43.0, 45.3]	
Positive for 2 or More Drug Categories	1,163	18.2	[17.3, 19.2]	286	31.9	[28.9, 35.0]	1,449	19.9	[19.0, 20.8]	

Table 7. Overall Drug Prevalence by Case Source

^Active THC (Δ -9-THC or 11-OH-THC).

Notes: "Drug" refers to alcohol, medications, and all other drugs included on this study's toxicology panel. This table combines data from all road users (e.g., drivers, pedestrians, bicyclists) included in the study.

	Trauma Center			M	[edical]	Examiner	Total			
		(<i>n</i> =6,	382)		(n =	897)	(N =7,279)			
Drug Category	n	%	95% CI	n	%	95% CI	Ν	%	95% CI	
Alcohol	1,364	21.4	[20.4, 22.4]	321	35.8	[32.7, 39.0]	1,685	23.1	[22.2, 24.1]	
Cannabinoids^	1,579	24.7	[23.7, 25.8]	251	28.0	[25.1, 31.0]	1,830	25.1	[24.2, 26.1]	
Stimulants	675	10.6	[9.8, 11.3]	112	12.5	[10.4, 14.8]	787	10.8	[10.1, 11.5]	
Sedatives	475	7.4	[6.8, 8.1]	73	8.1	[6.5, 10.1]	548	7.5	[6.9, 8.2]	
Opioids	541	8.5	[7.8, 9.2]	137	15.3	[13.0, 17.7]	678	9.3	[8.7, 10.0]	
Antidepressants	64	1.0	[0.8, 1.3]	10	1.1	[0.6, 2.0]	74	1.0	[0.8, 1.3]	
Over-the-Counter	106	1.7	[1.4, 2.0]	39	4.3	[3.2, 5.8]	145	2.0	[1.7, 2.3]	
Other Drugs	97	1.5	[1.2, 1.8]	36	4.0	[2.9, 5.4]	133	1.8	[1.5, 2.2]	
Positive for Any Drug	3,456	54.2	[52.9, 55.4]	60 7	67.7	[64.6, 70.7]	4,063	55.8	[54.7, 57.0]	
Drug Negative	2,926	45.8	[44.6, 47.1]	290	32.3	[29.3, 35.4]	3,216	44.2	[43.0, 45.3]	
Positive for 2 or More Drug Categories	1,163	18.2	[17.3, 19.2]	286	31.9	[28.9, 35.0]	1,449	19.9	[19.0, 20.8]	
		(T.C.)								

Table 7. Overall Drug Prevalence by Case Source

^Active THC (Δ -9-THC or 11-OH-THC).

Notes: "Drug" refers to alcohol, medications, and all other drugs included on this study's toxicology panel. This table combines data from all road users (e.g., drivers, pedestrians, bicyclists) included in the study.

A look at best Practices - 2004

- **Issue #1:** What are the major problems encountered in processing a drug-impaired driving case through the criminal justice system?
- **Issue #2:** Are current laws optimally structured to deter DUID?
- **Issue #3:** What resources currently exist to promote informed and effective DUID prosecution, and how can they be used more effectively?
- **Issue #4:** What should be the priority activities of stakeholders in advancing the enforcement and prosecution of drug-impaired driving?

Findings and Recommendations

National Safety Council Alcohol, Drugs, and Impairment Division

- Began looking at testing, scope, and cuttoffs in laboratories across the US
- Issued scope and cuttoff recommendations beginning in 2007

Alcohol, Drugs & Impairment Division

National Safety Council Alcohol Drugs & Impairment Division published Recommendations for Toxicological Investigation of Drug-Impaired Driving and Motor Vehicle Fatalities (Updated in 2021)

- Identifies drugs in Tiers (1 and 2)
- Tier 1drugs also include minimum levels required for detection

Recommendations for Toxicological Investigation of Drug-Impaired Driving and Motor Vehicle Fatalities—2017 Update

Barry K. Logan^{1,2,*}, Amanda L. D'Orazio^{1,3}, Amanda L.A. Mohr¹, Jennifer F. Limoges⁴, Amy K. Miles⁵, Colleen E. Scarneo⁶, Sarah Kerrigan⁷, Laura J. Liddicoat¹, Karen S. Scott³, and Marilyn A. Huestis^{2,8}

https://aca	ademic.oup.com/jat
NHRISENE State of the second	In the second se
TAT)	OXFORD

Analytical Toxicology

lournal of

Tier I drugs were considered essential for inclusion in routine testing workflows. Tier II analytes had limited or regional prevalence, were encountered less frequently or required more advanced instrumentation

Recommendations for Toxicological Investigation of Drug-Impaired Driving and Motor Vehicle Fatalities – 2017 Update

Barry K. Logan^{1,2,*}, Amanda L. D'Orazio^{1,3}, Amanda L.A. Mohr¹, Jennifer F. Limoges⁴, Amy K. Miles⁵, Colleen E. Scarneo⁶, Sarah Kerrigan⁷, Laura J. Liddicoat¹, Karen S. Scott³, and Marilyn A. Huestis^{2,8}

https://academic.oup.com/jat

Tier I Drugs

Cannabinoids	CNS Depressants Cont.
Δ9-THC	Diazepam
Carboxy-THC	Nordiazepam
11-hydroxy-THC	Oxazepam
CNS Stimulants	Temazepam
Methamphetamine	Narcotic Analgesics
Amphetamine	Codeine
MDMA	6-MAM
MDA	Buprenorphine
Cocaine	Norbuprenorphine
Benzoylecgonine	Fentanyl
CNS Depressants	Hydrocodone
Carisoprodol	Hydromorphone
Meprobamate	Methadone
Alprazolam	Morphine
Alpha-hydroxyalprazolam	Oxycodone
Clonazepam	Oxymorphone
7-Aminoclonazepam	Tramadol
Lorazepam	O-Desmethyltramadol

Tier II Drugs

CNS Depressants Cont.
Pregabalin
Secobarbital
Topiramate
Trazodone
Tricyclic antidepressants
Valproic Acid
Zopiclone
Narcotic Analgesics
Fentanyl analogs
Novel opioids
Tapentadol
Dissociative Drugs*
Dextromethorphan
Ketamine
PCP
Inhalants*
Difluoroethane
Inhalant class
Hallucinogens*
Hallucinogens

Summary Data

- A total of 2,514 cases were analyzed
 - -Data in chart is not mutually exclusive

Category	Number of Cases	Percent of Total
None Detected	107	4%
Ethanol Positive	1004	40%
Drug Positive	1982	79%

Percent Positivity Data (n=2,514)

None Detetected
Tier I and Tier II
Tier I and Ethanol

- Tier II Only
- Ethanol Only
- Tier I, Tier II and Ethanol
- Tier I Only
- Tier II and Ethanol

Tier I Findings

Tier II Findings

Drug	No. of Positive Cases	Positivity (%)
THC	1,227	48.8
Ethanol	1,004	40.0
Methamphetamine	391	15.5
Fentanyl	348	13.8
Amphetamine	347	13.8
Benzoylecgonine	174	6.9
Alprazolam	87	3.5
Cocaine	86	3.4
Methadone	68	2.7
7-Amino Clonazepam	62	2.5
Buprenorphine	52	2.0
Clonazepam	45	1.7
Oxycodone	42	1.6
Tramadol	28	1.1

Drug	No. of Positive Cases	Positivity (%)
Diphenhydramine	187	7.4
Gabapentin*	104	5.5
Hydroxyzine	90	3.5
B-Aminoclonazolam	80	3.1
Fluorofentanyl	71	2.8
Trazodone	69	2.7
Cyclobenzaprine	54	2.1
Doxylamine	53	2.1
Lamotrigine	50	1.9
Etizolam	47	1.8
Eutylone	42	1.6
Mitragynine	34	1.4
	* n=1,907 for gabapentin	

■ n=2,514

Tier II: NPS Findings

DRE Category	No. of Identifications	Compound (Number of positives)
Synthetic Cannabinoids	3	MDMB-4en-PINACA (2), ADB-BINACA (2) 5F-ADB 3,3-Dimethylbutanoic Acid (1)
Cathinones	4	Eutylone (42), Butylone (1), N-ethylpentylone (1), Dibutylone (1)
Novel Benzodiazepines	7	8-Aminoclonazolam (80), Etizolam (47), Clonazolam (38), Flubromazolam (12), Flualprazolam (10), Adinazolam (1), Bromazolam (6)
Fentanyl Analogs	3	Fluorofentanyl (71), Methoxyacetylfentanyl (9), Chlorofentanyl (1)
Novel Opioids	4	Isotonitazene (3), Metonitazene (3), N-Pyrrolidino Etonitazene(2), Protonitazene (1)
NPS Hallucinogens	1	4-HO-DiPT (3)

Ethanol and THC in Combination with Tier I Drugs

Fentanyl Combinations with Tier I Drugs

🗯 cfsre

Drug Positivity at Various BAC Thresholds

Evaluated for 2,514 cases

Stop Limit Thresholds					
	<0.08 g/100 mL	≥0.08 g/100mL	≥0.10 g/100 mL	≥0.15 g/100 mL	
Tier I Only Positivity	33.0% (n=829)	11.5% (n=288)	10.6% (n=266)	6.4% (n=152)	
Tier II Only Positivity	2.9% (n=72)	3.1% (n=79)	2.8% (n=71)	2.1% (n=32)	
Tier I and Tier II Positivity	23.9% (n=602)	4.4% (n=111)	3.9% (n=97)	2.7% (n=41)	
Positivity for any Tier I, Tier II or Combo	60% (n=1,503)	19% (n=478)	17.3% (n=434)	11.1% (n=280)	

Tier I Drug Positive Results at BAC ≥0.10 g/100 mL

- 813 cases with a BAC at or greater than 0.10 g/100 mL
- Data in chart represents cases only positive for a Tier I drug

Drug	Number of Positive Cases	Percent of Cases with Drug
THC	209	25.7%
Amphetamine	20	2.4%
BZE	20	2.4%
Methamphetamine	11	1.3%
Cocaine	11	1.3%
Fentanyl	10	1.2%
Alprazolam	6	0.7%
7-Aminoclonazepam	4	0.5%

Tier II Drug Positive Results at BAC ≥0.10 g/100 mL

813 cases with a BAC at or greater than 0.10 g/100 mL

🜔 cfsre

Data in chart represents cases only positive for a Tier II drug

Drug	Number of Positive Cases	Percent of Cases with Drug
Diphenhydramine	21	2.5%
Doxylamine	8	1.0%
Hydroxyzine	7	0.8%
Cyclobenzaprine	4	0.5%
Mitragynine	3	0.4%

Other NPS detected etizolam (n=1) and flubromazolam (n=1)

4-Year Assessment of Concentration Data

- Number of meth positives nearly doubled from 1,541 to 2,998
 - Number of fentanyl positive cases climbed to 2,122 in 2020 from 330 in 2017

	Drug	Year	Median (ng/mL)	Max (ng/mL)
		2017	4.0	140
t	THC	2018	4.4	100
	INC	2019	4.4	230
		2020	4.5	160
		2017	180	5,500
	Mathananhatanaina	2018	230	8,800
	Methamphetamine	2019	240	8,200
		2020	240	13,000
	Fentanyl	2017	4.2	56
		2018	3.4	83
		2019	4.6	140
		2020	5.4	310
	Amphetamine	2017	36	1,400
		2018	39	4,100
		2019	39	5,400
		2020	37	2,700

4-Year Assessment of Concentration Data

 Number of alprazolam cases steadily declined from 1,951 in 2017 to 46 in 2020

Drug	Year	Median (ng/mL)	Max (ng/mL)
	2017	65	7,000
Cocaino	2018	66	2,300
Cocame	2019	67	7,000
	2020	56	1,400
	2017	44	1,300
Alprazolam	2018	40	1,200
	2019	34	390
	2020	32	1,400
	2017	190	1,200
Mathadana	2018	215	1,000
Methadone	2019	230	1,100
	2020	210	1,200
	2017	24	340
7-	2018	25	290
aminoclonazepam	2019	35	380
	2020	30	180

Recent Reviews by the RTL Program

Information from states across Regions 5,7,9

- Data is consistent with the findings of CFSRE
 - Tier I and II drugs are most prevalent
 - NPS drugs are detected but at a much lower rate

Next Steps

- CFSRE in coordination with the RTLs will work to incorporate more laboratories across the Nation to determine the drug prevalence in all DUID cases.
- NHTSA is preparing to launch another Roadside Survey to update the survey done almost 10 years ago
- Consistent reporting into the FARS database will improve data interpretation

Acknowledgments

- Mandi Mohr CFSRE
- RTLs Amy Miles, Sabra Jones, Kristen Burke

• NHTSA

Thank you for your Time

Chris@soft-tox.org