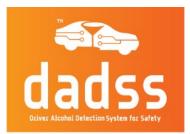


DRIVER ALCOHOL DETECTION SYSTEM FOR SAFETY TECHNOLOGY

A Vehicle Safety Technology Approach to Reducing Alcohol-Impaired Driving – A Status Update

2023 AllPA Annual Conference

Bud Zaouk KEA Technologies, Inc.


ALCOHOL-IMPAIRED FATALITY TREND THE LARGEST, MOST PERSISTENT TRAFFIC SAFETY PROBLEM

Alcohol-impaired crashes are crashes that involve at least one driver or a motorcycle operator with a blood alcohol concentration of 0.08 grams per deciliter or above, the legal definition of alcohol-impaired driving in most states Source: National Center for Statistics and Analysis. (2022, October). Traffic safety facts 2020: A compilation of motor vehicle crash data (Report No. DOT HS 813 375). National Highway Traffic Safety Administration

THIS DOCUMENT IS **PROPRIETARY AND CONFIDENTIAL**. NO PART OF THIS DOCUMENT MAY BE DISCLOSED IN ANY MANNER TO A THIRD PARTY WITHOUT THE PRIOR WRITTEN CONSENT OF ACTS.

POTENTIAL SAFETY BENEFITS

- IIHS projects 9,400 deaths could be prevented annually
- ✓ Over 15 years:
 - Almost 59,000 deaths and approximately 1.25 million nonfatal injuries could be avoided; and an
 - Estimated \$342 billion in injury– related costs avoided (University of Michigan)

Drunk driving is the still the #1 cause of traffic fatalities, costing the U.S. an estimated \$194 billion annually

 \checkmark

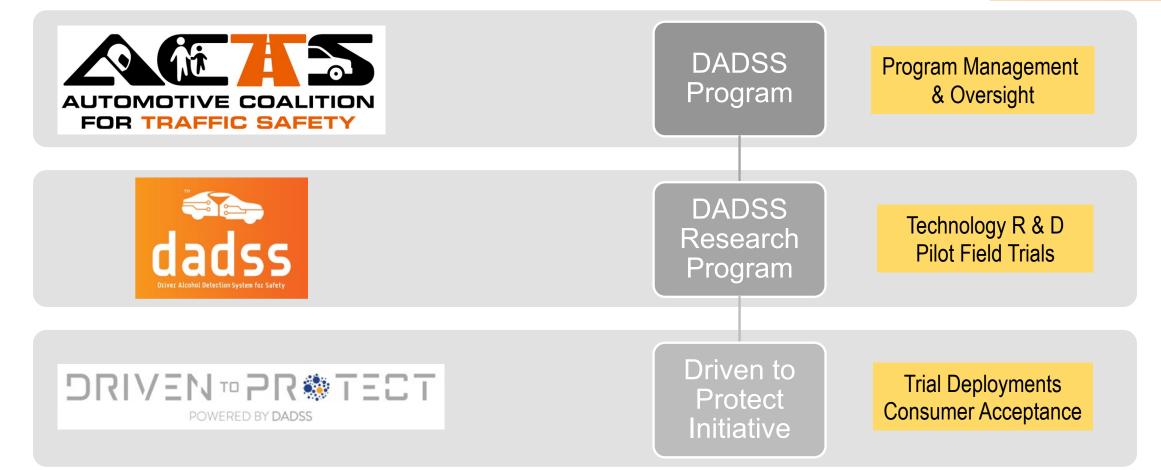
Sources:

Farmer, C. M. (2020) Potential lives saved by in-vehicle alcohol detection systems. IIHS. Available at https://www.iihs.org/topics/bibliography/ref/2209.

Carter, P. M., Flannagan, C. A., Bingham, C. R., Cunningham, R. M., & Rupp, J. D. (2013) Alcohol ignition interlock installation in new vehicles as a primary prevention measure to decrease alcohol involved crash fatalities and injuries. In *Alcoholism-Clinical and Experimental Research*, 37, pp. 149A-149A. Wiley-Blackwell: Hoboken, NJ

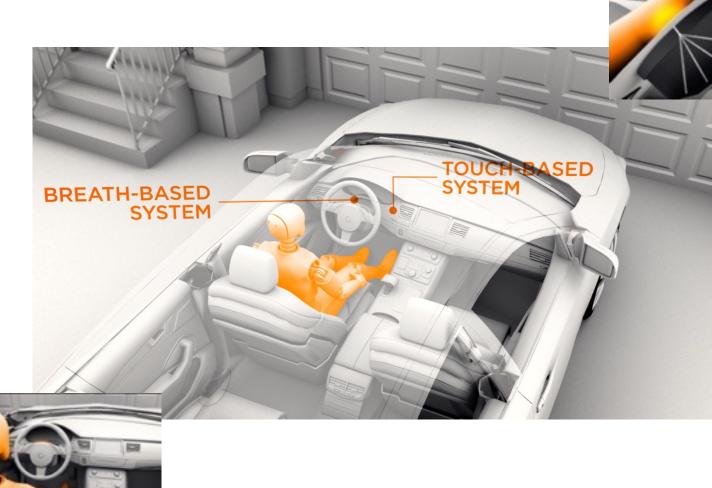
HIGH LEVEL OBJECTIVES DADSS PROGRAM

- Public–Private partnership between the Automotive Coalition for Traffic Safety, Inc. (ACTS), a nonprofit, and the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA)
- Successfully develop and commercialize one or more vehicle-integrated technologies to rapidly
 measure a driver's blood alcohol concentration (BAC) *in-situ* with the high precision and
 accuracy needed
- Facilitate the deployment of commercialized DADSS technologies as widely as possible as rapidly as possible through:
 - Patent coverage in areas of the world where motor vehicles are manufactured
 - Ensuring that ACTS and its licensees have clear title and freedom—to—operate
 - Open licensing


TECHNOLOGY OVERVIEW DADSS PROGRAM

- Developing first-of-its-kind technology to detect when a driver is impaired with an alcohol concentration at or above the legal limit in the United States and prevent the car from moving
- Two technologies being researched: Breath-based and touch-based systems
- Programmable for a zero-tolerance limit for the underage driver
- Made available as a safety option in new vehicles, much like AEB, LDW, other ADAS technologies or other DMS technologies
- Ultimate goal is fast, accurate, reliable and affordable technology that will not hassle sober drivers

PROGRAM ORGANIZATION DADSS PROGRAM





DADSS TECHNOLOGIES

The **Breath** System measures the alcohol in a driver's naturally exhaled breath. A small sensor compares the amount of carbon dioxide molecules with alcohol molecules in the driver's breath using infrared light.

The **Touch System** measures the blood alcohol concentration under the skin's surface by shining an infrared-light through the fingertip or the palm of the driver.

DISTANT SPECTROSCOPY DADSS BREATH SYSTEM

- Uses infrared detectors that simultaneously measure the concentrations of ethyl alcohol (ethanol) and carbon dioxide is a driver's expired breath
- Carbon dioxide in the breath sample provide an indication of the degree of dilution of the alcohol concentration
- Diluted breath is drawn into a measurement cavity (optical bench assembly) where optical detectors measure the infrared light absorbed by the ethanol and carbon dioxide in the sample
- Using these measurements, the driver's breath alcohol concentration is calculated

Manufacturing Partners

Asahi KASEI

Senseair

THIS DOCUMENT IS **PROPRIETARY AND CONFIDENTIAL**. NO PART OF THIS DOCUMENT MAY BE DISCLOSED IN ANY MANNER TO A THIRD PARTY WITHOUT THE PRIOR WRITTEN CONSENT OF ACTS.

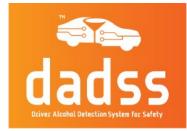
FIRST PRODUCT **POWERED BY** DADSS **TECHNOLOGY**

- GEN 3.3 Breath Sensor
- **Directed Breath**
- Zero Tolerance
- Intended use:
 - Fleets
 - Newly-licensed (underage) drivers
- Released Dec. 2021

Specification shee	t
Operating environment	
Operating temperature	-40 to +85 °C
Storage temperature	-40 to +85 °C
Area of use	Road vehicle use
Installation	Vehicle mounted
Functional characteristics and performan	
Sensor	Non-dispersive Infrared Optical Sensor
Measurement method	Contactless (mouthpiece-free)
Acceptable distance	0-40 cm
Accuracy	\pm 7.5% or \pm 0.015 mg/L, whichever is larger
Precision	5.0% or 0.015 mg/L, whichever is larger
Dimensions	
Weight	240 gram
Dimensions	170.9 x 56 x 28 mm
Electrical requirements and communicat	
Power supply 12 V, DC	Power supply 12 V, DC
Power consumption	Peak 100W, steady state 10W
Communication	CAN
HMI option	Digital I/O, low voltage TTL-level
Standard compliance	
Measurement performance	Compliance with SAE-J3214
EMC	E-mark

-eatures Accept highly diluted breath samples Hygienic, no mouthpiece, touchless system Clean behind panel installation "the invisible sensor" Communication to vehicle via CAN 1 1 1 1

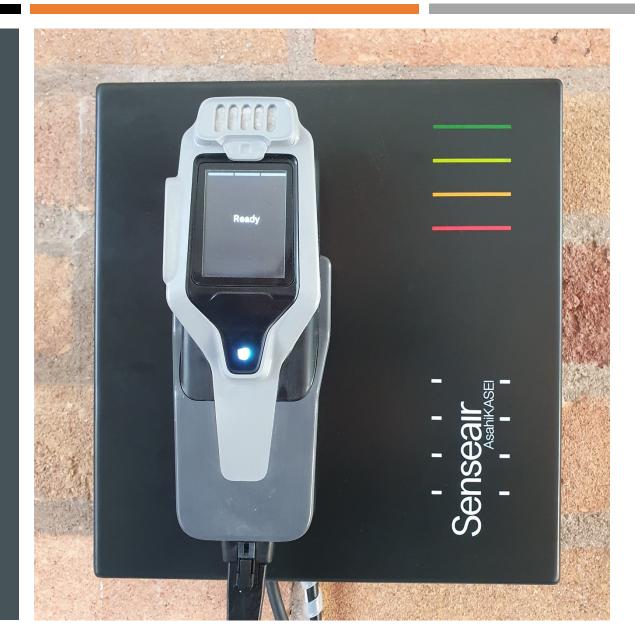
Sensear


An Asahi Kasei Group Company

Contact Senseair Flottiljgatan 49 721 31 Västerås Sweden

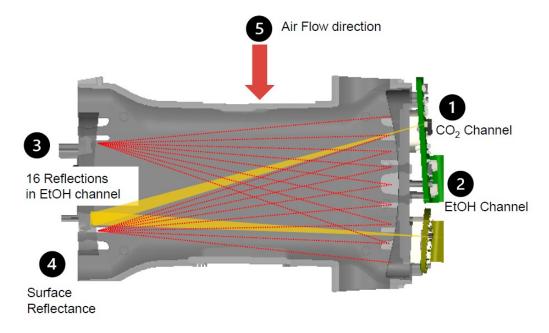
Tel: +46 (0) 21 80 00 99

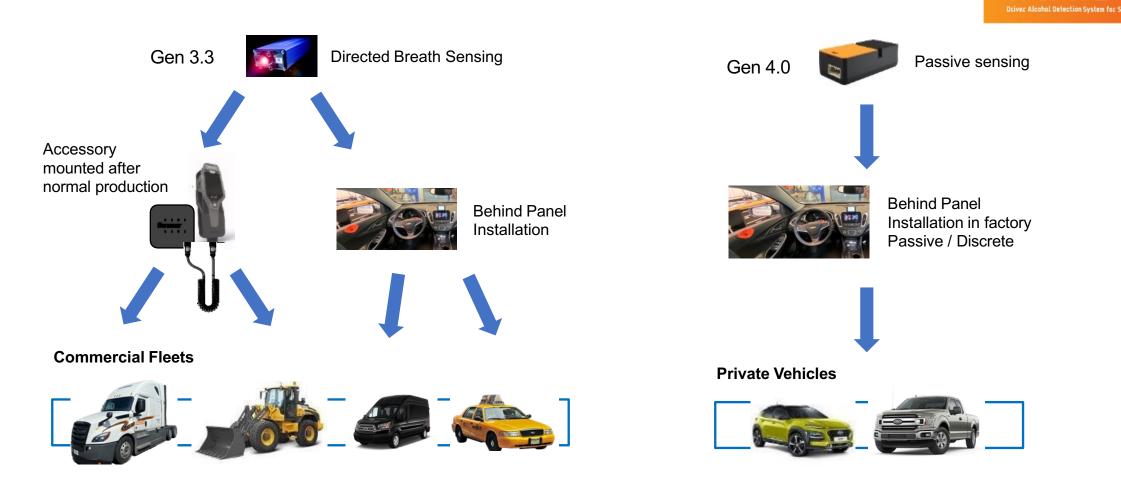
info@senseair.com


www.senseairsafestart.com 170.9 x 56 x 28 mm 267,971.2 mm³


SENSEAIR GO | POWERED BY DADSS

- GEN 3.3 Breath Sensor
- Stationary or mobile applications
- Access control for entry into safety–sensitive areas
- Screening of employees with safety– critical job functions
- Aftermarket vehicle installations


GEN 4.0 PASSIVE SENSOR DADSS BREATH SYSTEM



GEN 4.0 vs. GEN 3.3

- Reduced size of form factor by 40% to 50%
- Redesigned optical bench assembly (OBA)
- Improved signal-to-noise ratio via two new alcohol detectors
- Designed for manufacturing in automotive quantities and to automotive quality standards

DEPLOYMENT STRATEGIES

TISSUE SPECTROSCOPY DADSS TOUCH SYSTEM

Laser System

Sensalight

Technologies

nano

Tier 1/ Tier 2

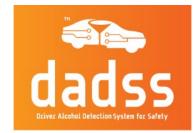
Manufacturing

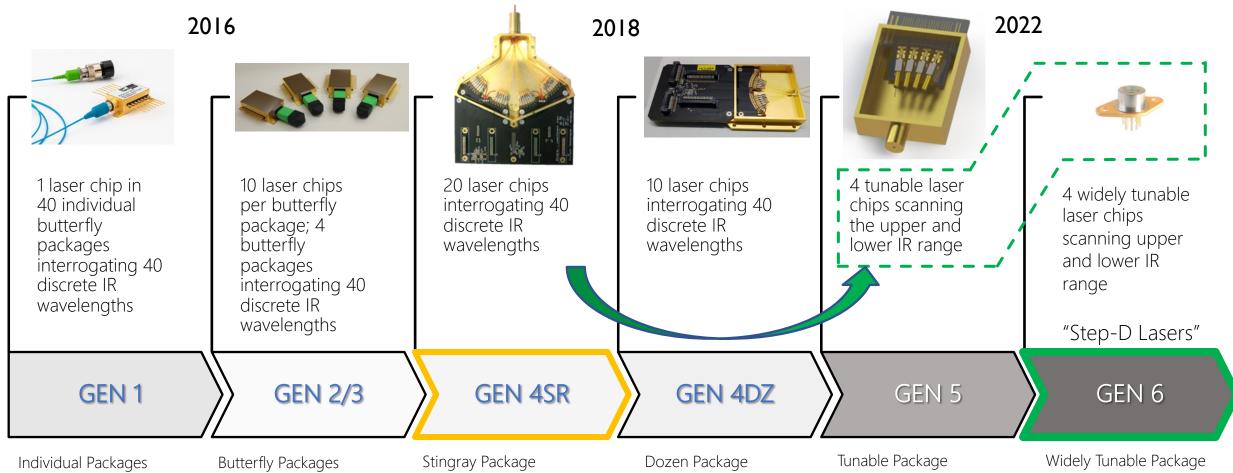
Partners

currently being vetted

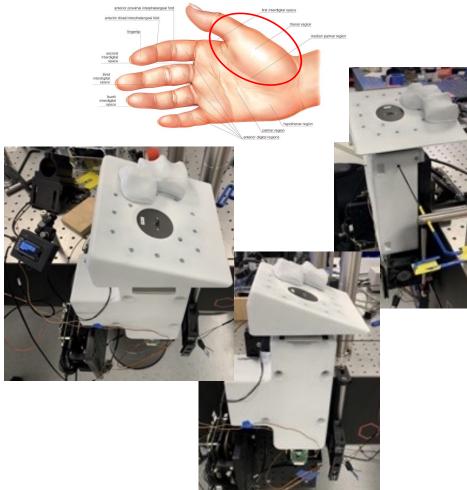
Manufacturing Partner

Nanosystems and


Technologies GmbH \sim




- Touch sensor allows the estimation of BAC by measuring the ethanol concentration in the capillary blood in the dermis layer of the skin (finger pad, back of finger, thenar)
- Driver touches a pad with an optical module and near infrared (NIR) light shines on the driver's skin and propagates into the tissue
- A portion of the light is reflected back, where it is collected by the touch pad.
- This light transmits information about the tissue's chemical properties, including the concentration of the ethanol present
- The touch sensor consists of the laser diodes, the laser guiding system to relay the laser light into the skin, the detectors to receive the reflected signal, a reference sensor, and electronics to power and control the system


TISSUE SPECTROSCOPY LASER SYSTEM DEVELOPMENT

CURRENT STATUS DADSS TOUCH SENSOR (RADIANT)

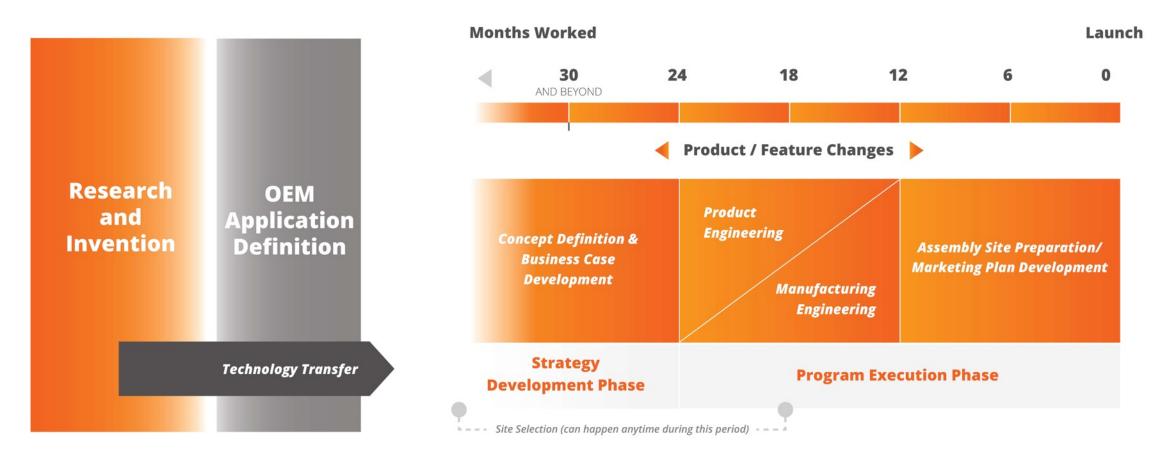
- Currently measuring ethanol in human tissue (thenar) in reflectance across multiple human subjects and multiple tests using optical bench research (OBR) tool
 - Implemented stable reference channel
 - Implemented tunable laser in the upper near infrared band—the most challenging band
 - Improved laser modules (power output, thermal management, operating stability)
 - Improved optical assembly (light transmission, coupling efficiency, stray light, back reflections)
 - Improved tissue illumination (beam shape and quality)
 - Improved electronics (data synchronization and noise)
- Compact Reflectance Sensor Ver. 2 developed, fabricated and now undergoing testing

COMMERCIALIZATION CADENCE BREATH SENSOR DEVELOPMENT & DEPLOYMENT

BREATH SENSOR SENSOR CHARECTERISTIC	[Completed] GEN 3.3	B-Sample GEN 4.0	C-Sample GEN 4.0	Ref. Design GEN 4.0
Target Completion Date*	2021**	2023	2024	2025
Market Application	Fleet vehicles & accessory sales	Development	Consume	er vehicles
Vehicle Integration	After mass production (Upfitter or dealer installed)	Benchtop and Test Vehicle	During mass production; fully integrated system	
Alcohol (Ethanol) Set Point	0.02%		0.05 or 0.08%	
Operating Characteristics	Contactless, Directed–breath, single IR channel	Contactles	s, Passive-breath, dual	IR channel

*The time for integrating a DADSS sensor into a finished product will vary by the type of product and the product–level validation and verification necessary. In all instances, this is likely to be at least 18 to 24 months or longer.

** GEN 3.3 Breath Sensor Reference Design released for open licensing for use in commercial vehicles in December 2021.


COMMERCIALIZATION CADENCE TOUCH SENSOR DEVELOPMENT & DEPLOYMENT


TOUCH SENSOR METRIC	[Completed] Benchtop Dev. Unit	Functional Sample Radiant	A-Sample Radiant	B-Sample Radiant
Program Target Completion Date*	2022	2023	2024	2025
Market Application		Develo	opment	
Vehicle Integration	Benchtop		Benchtop or Test Vehicle	
Alcohol (Ethanol) Set Point		Up to 0.12%		0.05 or 0.08%
Operating Characteristics		ble single–laser, red user	•	tunable multi-laser, red user

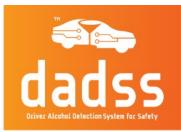
*The time for integrating a DADSS sensor into a finished product will vary by the type of product and the product-level validation and verification necessary. In all instances, this is likely to be at least 18 to 24 months or longer.

AUTOMOTIVE PRODUCT DEVELOPMENT & TECHNOLOGY TRANSFER

CONSUMER VS. AUTOMOTIVE GRADE ELECTRONICS

Automotive Grade

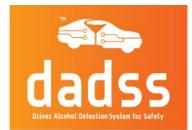
- Mission critical applications
- Failure can mean life-or-death
- Harsh operating environment (temperature, weather, other conditions)
- Long product life cycles and useful life



	Consumer	Automotive
Ambient Temperature Range	0° to 85°C	–40°C to 150°C
Expected Operating Life	2 – 3 years	15+ years
Acceptable Failure Rate	300 parts per million	Zero
Supply Lifetime	2 – 3 years	15 – 20 years

PERFORMANCE SPECIFICATION DEVELOPMENT

- Current standards are focused on Instruments <u>having a mouthpiece</u> and measuring breath alcohol for drinkdriving-offender programs and for general preventive use
 - EN 50436 Part 1 and 2, CSA Z627, NHTSA Model Specifications for BAIIDs (2013 and 2015)
- New generation of sensors are being developed that do not require a mouthpiece
 - Designed to be OEM integrated, factory mounted or aftermarket
- Critical need for an international standard focused on instruments with or without a mouthpiece


SAE J3214 – Published 01 JAN 2021

- Establishes the performance specifications for Zero-Tolerance Breath Alcohol Detection Sensors to reduce the risks of driving under the influence of alcohol.
 - Fleet owners
 - Parents with teenagers
- Specifies test methods and essential performance requirements for the directedbreath, breath alcohol detection system
- Takes into consideration sensors <u>without</u> <u>a mouthpiece</u>

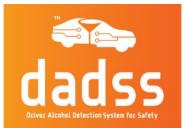
PERFORMANCE SPECIFICATION DEVELOPMENT


Directed / Active

Laboratory

PROMOTING CONSUMER AWARENESS, ACCEPTANCE, & DEMAND

- As the research progresses, we are simultaneously working to increase:
 - Awareness of the technology and how it works
 - Acceptance of the technology as a good auto safety system worth buying
 - **Demand** for the technology in their own car or their children's cars
- We are doing this in several ways:
 - Showcasing technology at public events
 - Presence at nearly 30 events in Virginia over the past 3 years
 - Securing top-tier media coverage
 - Local and national media coverage is very positive
 - Tracking public opinion research
 - Focus groups, phone surveys are consistently positive



Soon, Cars May Take Away the Keys of a Drunken Driver

STATE PARTNERSHIPS DRIVEN TO PROTECT INITIATIVE

Virginia

Naturalistic Human Subjects On-Road Driving Tests

1,686 Total Days

1	46	5,2	9	6
Tot	al Sam	ples		

99,119 Total Miles Driven

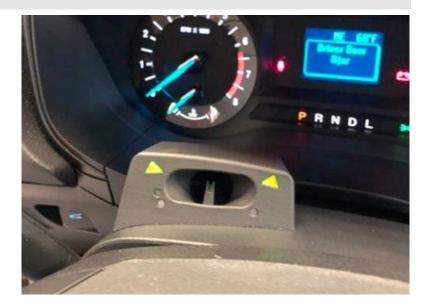
 $((\bullet))$

2.0

6 Total Vehicles

> 35,878 Total Sensor Operation Hours

Naturalistic Human Subjects On-Road Driving Tests



19,483 **Total Sensor Operation Hours**

STATE PARTNERSHIPS DRIVEN TO PROTECT INITIATIVE

Maryland

® `\Ø

E.

845 Total Days (Including pause for COVID pandemic)

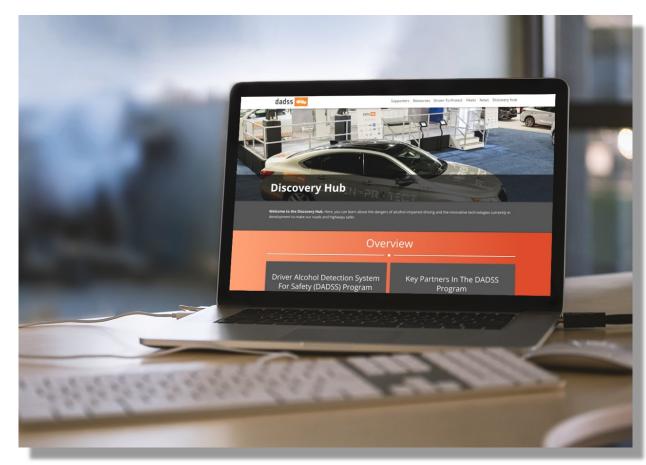
adee

86,731 Total Zero BrAC Samples

6,896 Total Positive BrAC Samples

Total Sensor Operation Hours

5,235


Naturalistic Human Subjects On-Road Driving Tests

STATE PARTNERSHIPS DRIVEN TO PROTECT DISCOVERY HUB

In 2020, in collaboration with the Virginia Department of Education, Driven to Protect launched the Discovery Hub, a virtual learning platform with a series of STEM lessons that put students in the shoes of the engineers and data analysts working on the DADSS technology.

https://www.dadss.org/discovery-hub

Michael Willis KEA Technologies, Inc. <u>Michael.willis@keatechinc.com</u>

Bud Zaouk KEA Technologies, Inc. bud.zaouk@keatechinc.com

Rob Strassburger ACTS <u>rstrassb@actsautosafety.org</u>